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Abstract—Two critical aspects of the computation of equilibrium phase relations in highly nonideal
thermodynamic systems are discussed: (1) identification of the saturation conditions and likely com-
positions of a suite of phases relative to a pervasive fluid phase, and (2) detection of phase separation
within a homogeneous phase and estimation of compositions in the resuiting equilibrium multiphase
assemblage. New algorithms are described which address both of these problems in multicomponent
thermodynamic systems and numerical results are presented for two and three component cases. An
appendix illustrates a method of deriving analytical expressions for derivatives of the Gibbs free energies
of phases characterized by internal “‘ordering” parameters.

INTRODUCTION

EQUILIBRIUM PHASE relations in multicomponent thermo-
dynamic systems are usually computed by solving sequen-
tially three interdependent subproblems. Initiaily, an estimate
must be made of the identity, proportions, and compositions
of phases in the system. Secondly, this estimate must be re-
fined, in order to satisfy exactly the equilibrium condition
for the specific set of imposed constraints, e.g., minimize the
Gibbs free energy under the constraint of constant temper-
ature, pressure, and system bulk composition. Thirdly, the
resulting assemblage must be evaluated for potential meta-
stability; derived phase compositions must fall outside mis-
cibility gaps and phases not included in the system must be
less stable than those currently in the equilibrium assemblage.
This three-stage problem is solved iteratively and is the basis
of modern computer algorithms for the computation of
chemical equilibria in geochemical systems (SMITH and Mis-
SEN, 1982). If the phases in the system are ideal or approx-
imately ideal, then the first and third stages of the calculation
are straightforward and attention may be focused on the nu-
merical problem of refining the equilibrium state from the
initial guess. Historically, this problem has received the
greatest attention, and for geochemical systems, the usual
method of solution is some form of potential minimization.
When attempts are made to calculate equilibrium relations
in systems containing highly nonideal phases, more attention
must be directed at the first and third stages of the calculation.
Indeed, the most difficult and time-consuming aspect of the
entire calculation can be establishing an initial guess of phase
compositions and proportions for the potential minimization
procedure. This paper presents two algorithms designed to
rapidly estimate equilibrium phase compositions in geo-
chemical systems dominated by highly nonideal phases. Spe-
cifically, methods are presented for (1) the determination of
the saturation condition and composition of a phase in a
system containing a pervasive fluid phase and (2) the detec-
tion of phase separation within a homogeneous phase and
estimation of the compositions of the resulting multiphase
assemblage. These algorithms are incorporated into the
MELTS software package (GHIORSO and SACK, 1994 ) which
models chemical equilibria in magmatic systems. They should
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however, be equally applicable to systems dominated by an
aqueous or gas phase, and may find use in modeling water/
rock interaction or the vapor sublimation of solids.

This paper is organized into three logical sections. The
phase stability algorithm is discussed in the first and the phase
separation algorithm is outlined in the second. Implemen-
tation of either algorithm depends on the ability to evaluate
analytically, first and second order compositional derivatives
of the Gibbs free energy of any phase in the system. The final
section of the paper (provided as an appendix) describes a
method of obtaining these derivatives for solution models
parameterized in terms of both compositional and ordering
variables. Such formulations are typicaily invoked to model
the Gibbs free energies of solid solutions with temperature,
pressure, and composition dependent cation ordering.

Estimation of Phase Stability in Thermodynamic Systems
with a Fluid Phase

Consider a thermodynamic system of p-components which
has at least one p~-component phase. For context, one might
imagine a magmatic system containing a molten silicate lig-
uid. Let us investigate the problem of determining the sat-
uration condition of a solid phase, with respect to a particular
bulk composition of this liquid, at certain specified values of
temperature (7°) and pressure (P). Specifically, we seek a
quantitative estimate of the extent of under- or super-satu-
ration of the solid with respect to the liquid, which implies,
if the solid in question is itself a multicomponent solution,
a determination of the composition of the solid which comes
closest to being in equilibrium with this liquid at the specified
T and P. This problem has an elegant geometrical solution
and is easy to visualize in a two-component system.

In Fig. 1, we plot hypothetical Gibbs free energy surfaces
for a two-component liquid (dark gray) and solid (white) at
three saturation conditions. A tangent plane to the liquid
Gibbs surface is also indicated. Its point of tangency corre-
sponds to an assumed liquid bulk composition. The solid is
undersaturated with respect to the liquid if its Gibbs surface
is always above this tangent plane (Fig. 1a), supersaturated
if it plunges below this plane (Fig. 1¢), and at saturation if
the tangent plane intersects the solid surface at one and only
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F1G. 1. Sketch of the molar Gibbs free energy surfaces of two phases in a two-component system. The vertical axis
measures the Gibbs free energy of the system, while the horizontal axes, in and out of the page. describe compositional
variation. A plane is drawn tangent to the phase denoted by the gray-colored mesh surface at some specified reference
composition. External conditions (i.e., T, P) are varied such that the second phase (denoted by the white-colored mesh
surface ) is undersaturated (a). saturated (b), and supersaturated (c). with respect to the first at this reference composition.
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FiG. 1. (Continued)

one point (Fig. Ib). As a tangent plane to the Gibbs surface
may be defined in terms of chemical potentials of components
in the phase { DARKEN and GURRY, 1953), the last diagram
is nothing more than a visualization of the condition of the
equality of chemical potentials in all phases in a system at
thermodynamic equilibrium. If, for the undersaturated (Fig.
1a)or supersaturated (Fig. 1¢) states, one imagines a tangent
plane to the solid surface which is parallel to the tangent
plane of the liquid, then the point of tangency of this plane
to the solid surface defines the composition of the solid “most
nearly” or “closest” to equilibrium with the liquid. If we
extend a vertical chord from the solid Gibbs surface at this
particular composition until it touches the liquid tangent
plane, the length of this chord is the chemical affinity: an
energetic measure of the extent of under- or super-saturation.
It follows that in a two-component system, the chemical af-
finity is nothing more than the offset between two mutually
parallel tangent planes. For a thermodynamic system of more
components, the principle is the same. A tangent hypersurface
is extended from the liquid Gibbs surface at the bulk com-
position of the liquid and a particular solid composition is
identified, such that a tangent hypersurface to the solid Gibbs
surface at this composition is ‘“*parallel” to that of the liquid.
The energetic offset between the two hypersurfaces is the
chemical affinity. The algorithm proposed here performs this
geometrical evaluation numerically.

We assume the composition of the liquid (or more gen-
erally the fluid) is described by p-thermodynamic compo-
nents, identified by i, ¢§9, ..., ¢®. The solid, whose sat-
uration condition is to be determined, is defined in terms of
»n + | components (for reasons which will become clear be-
low), identified by ¢, ¢, ..., ¢, ¢%%,. In practice, due

to limitations in our ability to construct comprehensive
models for mineral solid solutions, # + 1 is often less than
p. Dissolution of the solid into the liguid may be symbolized
by the following set of chemical reactions
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where the »; ; are stoichiometric reaction coefficients trans-
forming solid to liquid components. The Gibbs free energy
change (AG) for each of the reactions in Egn. | may be
written

i
—AG, = Z vl — pt

=1

P
~AG, = 2 ”n,i:“i‘lq - #Zm

i=1
p .
= AGpey = Z Vm‘ljl»‘«]ilq - ﬂnmil—lv (2)
=1
where ,u’; refers to the chemical potential of the /™ component

in the j" phase. The left-hand sides of the system in Eqn. 2
are zero if the liquid is saturated in the solid. In general, the
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individual AG,s in Eqn. 2 may be replaced with the chemical
affinity, A, if we specify that the composition of the solid be
chosen to be the “nearest equilibrium™ composition discussed
in the previous paragraph. This follows from the requirement
that the tangent hypersurface to the solid Gibbs energy at
this particular composition must be parallel to that of the
liquid. In other words, the energetic offset of the two hyper-
surfaces in each component direction (i.c.. the A(/;s) must
be identical (equal to 4), otherwise. the hypersurfaces would
not be parallel. With this stipulation, Egn. 2 becomes

ligq sol

—A =2 v

—4 = Z Un.fl'l:‘q - ”’fl“l
i=1
r .
—A = Z V/HI.:‘#!‘Q - llf;lll» (3)
=1
which may be rearranged to yield
ya
0= — A~ pu
i=1
»
O = ,U';OI -4 - Z Vn.t/-‘!]q
=
7
0= ,U:‘lll - A - Z VlHl.lﬂg'lq~ (4)

i

Finally, the system of equations in Eqn. 4 may be simplified
using the following identities:

= #Jo + RT In q;.
»
/ — .00l .
Ay = 7" — > 1’,1~/#}”q~
i1

where ¢; is the activity of the j™ component, R is the gas
constant, and the superscript zero refers to the standard state *
This results in

0=RTInad — 4+ Ay,

0=RTIna® —~ A+ Au,
0=RTIna, — A+ Atysi. (5)

which is the mathematical embodiment of the geometrical
construction illustrated in Fig. 1.

Equation 5 represents a system of » + | equations in #
+ 1 unknowns. The unknowns are the chemical affinity for
the solid-liquid reaction and the n-independent composi-
tional variables which when specified, define uniquely the
activities of the n + 1 thermodynamic components. For
example, we might choose the first # mole fractions (X ) as

* Here, defined as unit activity of the pure substance (endmember
solid component) at any 7 and P.

independent compositional variables, Utilizing the identity,
R B X # permits calculation of the
n + 1 activity terms, and the set of unknowns in Egn. §
becomes { X3, ... X 1. In general, the composition
of the solid may be specified by the set of parameters r,. r,,
.. .. Iy which may or may not correspond to the first # com-
ponent mole fractions.

If the solid is an ideal solution. the system in Egn. 5 has
an analytical solution. Setting activity equal to mole fraction,
we rewrite Eqn. 5 as

0=R7In X%~ 44 Ay,

0=RTIn X2~ 4+ A,
0=RTIn(1 - XP oo = X¥)— A+ An,,r. (6)

Subtracting the #'™ equation from the rest eliminates the
chemical affinity term and establishes a relation between the
first 7 — 1 and the »' mole fractions:

Y T»I — p’l X flol
'\Y:;)Il :'j D)nfl \/ ;01 " ( 7 )
and

X5 = Bl X - e = X, (8)

where the constants 3, are given by
)51 = ¢ CAu—~ Aup)/ g7

ﬁn—l = o (Sun 1 dun)/RT

B, = ¢ (Bup - Bupe )/ RY
n "

Substitution of Eqn. 7 into Eqn. 8 results in a solution for
/\r Zol

/‘r'so]: b’"
[l +6n(1+ﬁl+ ct

. 9
+b‘nl)] ( )

Evaluation of Egns. 9 and 7, along with any one of those in
the system stipulated in Eqn. 6 provides a unique solution
for the saturation condition in the case of an ideal solution.

For the general case of nonideal activity composition re-
lations, the solution of the nonlinear system in Eqn. 5 is
effected by forming the sum of squares of the right-hand-
sides of the system, i.e.,

el

Oy, ... .t A)= 3 (RTIna¥ — A+ Ap)*,  (10)

i=]

and minimizing this sum of squares with respect to the un-
known affinity and composition variables. The numerical
technique used in the following examples and suggested for
general implementation is based upon a modification of
Marquardt’s procedure (NasH, 1990). The technique and
modifications are discussed in the appendix. Unfortunately,
finding the minimum of Eqn. 10 is fraught with difficulties.
Most of the problems and the numerical tricks to work around
them, can be illustrated using a simple two-component ex-
ample.
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Consider a two-component solid solution with activity
composition relations given by a regular-solution model:

w1l - X))
asxtﬂ = XCXP{—(_K-T_’“)—]
wx?
a3°'=(1~X)exp[ RT}. (1)

For illustration, we choose a regular solution parameter ()
of 20 kJ, a temperature of 1000 K, and values of Ay, and
A, equal to | and 2 kJ, respectively. Substituting Eqn. 11
into Eqn. 10, permits construction of a plot of ® as a function
of X for a given value of 4. In Fig. 2, we plot ® vs. X for the
regular solution model, adopting a value for 4 of ~0.1 kJ. A
similar curve for ideal activity-composition relations is also
plotted and corresponds to a value of 4 of 4.3 kJ. These
affinities were chosen in order to make & evaluate to zero
somewhere in the interval 0 < X < 1. They are the optimal;
adopting other values cause ® to be strictly greater than zero
over this interval. An examination of Fig. 2 reveals that even
though we have purposely chosen a very simple nonideal
model for the activity-composition relations of this solid so-
lution, this model generates multiple minima in ®. The so-
lution sought is the one with the deepest minimum, the so-
called *‘global” minimum. The numerical algorithm used to
minimize Eqn. 10 must find that minimum or the answer
will not be physically realistic. Herein lies the problem. The
minimum found by the algorithm will depend on the specified
initial guess of its location. This is because all numerical
methods aimed at this class of problems work by accepting
some initial guess to the minimum, by computing a “down-
hill” search direction at that guess, and by proceeding in the
indicated direction until the minimum is reached. These
methods are intrinsically “local” and there is no way to know
if the minimum found is the answer sought, without bringing

0.2 0.4 0.6 0.8

FIG. 2. Plot of (1) the molar Gibbs free energy of mixing { G™*)
of a two-component regular solution (W equal 20 kJ, T equal 1000
K). (2) the function & (Eqgn. 10) for this solution (Au, equal 1 kJ,
Apy equal 2 kJ), and (3) a function ® for the corresponding ideal
solution. The mole fraction (X} of the first component is plotted on
the ordinate. The arrows labeled G, denote the minima in G™>,
that labeled Id denotes the minimum in &4, and those labeled m,,
m,, and m, refer to minima in .

to the method additional information regarding the nature
of the global minimum. In the case of the function & we
know that the global minimum has a function value of zero,
and therefore have a criteria for identifying false solutions.
What is needed, is a procedure to compute insightful initial
guesses.

Examining Fig. 2, it may seem quite obvious how to pro-
ceed. Simply choose an initial guess to the right of the hump
in the function that occurs at an X value of approximately
0.7. Of course, that is the logical way to proceed, but it is not
a sufficiently general approach to be applicable to higher di-
mensional problems or those with more complex Gibbs
functions. We need a general and systematic algorithm. Con-
sider the following approach. Choose as an initial guess for
the nonlinear minimization algorithm, values of X and 4
which correspond to the solution for ideal activity-compo-
sition relations. This initial guess has two important advan-
tages: (1) It can be computed uniquely for arbitrarily large
systems, and (2) it can be computed analytically and therefore
rapidly. The composition given by this solution is labeled by
the arrow “Id” in Fig. 2. Fueled with this initial guess, the
nonlinear minimization algorithm proceeds to the local min-
imum labeled by m, in Fig. 2. This is a false minimum, which
is detectable because the function value (®) is nonzero at
this composition. Now, the strategy is to guess where the
global minimum in & is likely to be, since the “easy to com-
pute” initial guess failed. Note that in Fig. 2, the additional
local minimum in @ (labeled /) and the global minimum
{labeled m, ) are crudely associated with minima in the Gibbs
energy of mixing function of the solid. Perhaps recomputing
an initial guess corresponding to one of the minima in the
solid Gibbs function (G™*) would be a better choice? Finding
these minima in G™ is itself computationally costly, in that
an iterative procedure must be used. However, the minimi-
zation of G™ is a one parameter { X) problem and fast nu-
merical algorithms are available (see below). To find the
minimum in G™, the algorithm needs to start somewhere:
it requires its own initial guess to get going. We choose Xj4.
The downhill direction leads to larger values and eventually
to the X-value labeled G, in Fig. 2. This value, along with
the value of 4,y determined previously, is used as an initial
guess to minimize the function ®. The global minimum at
my is found successfully by the algorithm starting from this
new guess. Will this procedure always work? It is apparent
from Fig. 2 that the reason this sequence of trials succeeded
in finding the global minimum is because the right-hand
minimum in G™* was located and provided the new guess
for location of the minimum in ®. This is a direct consequence
of the fact that X4 (the starting point in the search for G, )
is located to the right of the maximum in the G™* surface
at 0.5. Suppose, for discussion, X,y happened to be slightly
smaller than 0.5. Then the G™* minimization procedure
would have led to the left minimum, and the ® minimization
procedure would have found m; . In this eventuality, one last
attempt can be made to find the global minimum in &. Start
once again from X}y to minimize G™, but this time move
in the uphill direction, past the maximum in G™*, to find
the minimum located on the other side of this maximum.
This procedure eventually results in the correct identification
of m,.
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FiG. 3. Analysis of phase saturation conditions involving a three-
component regular solution. W', W3, and Wy are chosen to be
50, 0. and 20 kJ, respectively. Au,, Auz, and Ay; are taken as 1, 3.
and 2 kJ. The temperature is assumed to be 1000 K. (a) Contour
diagram. in kJ. of the molar Gibbs free energy of mixing (G™"). (b)

Having developed empirically an algorithmic strategy.
suppose we try this procedure with a three-component solid.
Consider a regular solution with H's, B and H, equal
to 50, 0, and 20 kJ, respectively. For the sake of illustration.
we assume values of Auy. Aps, and Apy of 1. 3 and 2 k.
Figure 3a provides a contour map of the Gibbs free cnergy
of mixing for this solution and Fig. 3band c display contours
of the logarithm of the ¢ function assuming ideal mixing
(3b). with an affinity of 7.174 kJ. and the regular solution
model (3¢), with an affinity of 4.326 kJ. As in the previous
example, the affinity values chosen for plotting are optimal
and allow & to have a value of zero somewhere in the ternary.

The global minimum in P 1s located very close to the |-
3 join and is indicated by the black dot in Fig. 3. The dot
fitled with horizontal rules denotes the position, (. X ).
of the minimum in ¢ determined by assuming that the solid
1s an ideal solution. Figure 3b clearly shows this minimum
in &y. Following the procedure suggested above, (X, Xo)
15 used as an initial guess to locate a minimum i <. It can
be seen from Fig. 3c, that the downhill direction from this
initial guess leads ultimately to the gray-filled dot which plots
near the 2-3 join. This 1s a false minimum. A new initial
guess needs to be computed. The procedure developed for
the two-component case suggests returning to the point (X,
X5 g and proceeding from that point to the closest minimum
in G™*. In the two-component case, that was an easy min-
imization problem in one parameter. In the present case. it
1s a multidimensional minimization problem. which is com-
putationally costly and becomes progressively more dithcuit
to solve as the number of components in the solid solution
increases. Ideallv. we would like to take advantage of the
simplicity of the two-component minimization algorithm by
searching within some pscudobinary section of this three-
component system, performing a one parameter minimiza-
tion along an optimally chosen search direction that most
likely points towards minima in ™. This pscudobinary
section is given by the “direction of minimal curvature™ ot
G™* and corresponds to a vector which starts at (.Y, V)
and extends in the *most downhill™ direction from that point.
The direction of minimal curvature is provided by the min-
imum of a function (BARRON, 1078).

known as the Rayleigh Quotient. In Eqn. 12, p 1s defined in
terms of a scalar-valued function of a vector ( 7) of concen-
tration variables. In the three-component case being consid-
ered, 7 is given by the vector [ .Y}, X3] and 7, refers to the

Contour diagram of log ( $44) evaluated for an ideal three-component
solution with Ag; as specified above. An affinity value of 7.174 kJ
was used. (¢) Contour diagram of log (&) for the regular solution
with Ag; as specified above. An affinity value of 4.326 kJ was used.
In all three diagrams. the horizontally ruled dot denotes the minimum
in @4, the black dot the global minimum of &, the stippled dot a
local minimum in &, and the open dots define minima in the G™*
surface along the pseudobinary (dashed line ) defined by the direction
of minimal curvature of G™* at the point denoting the minimum of
q)]d-
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point (X, X2)i4. Note that the second derivative matrix of
G™* needs to be computed only at the point 7yy. The min-
imum of p with respect to 7 is given analytically by (NAsH,
1990):

%)

aZC?mix . N
[‘?’.’3‘—} Fmin = PminFmin- (13)

Equation 13 may be recognized as a familiar eigenvector-
eigenvalue problem. In order to minimize p, the particular
solution of Egn. 13 is sought that corresponds to the smallest
eigenvalue (pmin) and its associated eigenvector ( 7y, ). For
the three-component example under discussion here, the
pseudobinary defined by 7, is given by the dashed line in
Fig. 3. We now initiate a one-dimensional search along this
dashed line in order to minimize the projected Gibbs energy
of mixing function:

G ™ (Frg + Nmin), (14)

with respect to the free parameter, . Along this pseudobinary
there are two minima in G™*"_ These are indicated by the
unfilled dots in Fig. 3. As in the two-component case, the
one dimensional minimization algorithm proceeds downhill
from (X, X )i along this pseudobinary section and stops at
the minimum closest to the 1-3 join. This then becomes the
new initial guess and the global minimum in & is found di-
rectly. If the “downhill” search direction along the pseudo-
binary section had resulted in finding the other minimum of
G™Pthe false minimum in ® would have been attained,
and the procedure would be to “look™ uphill along the pseu-
dobinary section until the maximum in G™*" ig crossed
and the other minimum is achieved.

Based upon our analysis and the success of the previous
examples, a general algorithmic scheme may be proposed.

Algorithm for the computation of the saturation state of a
solid. referenced to a liquid of known composition, at some
specified temperature and pressure

(step Oa) Specify a model for the molar Gibbs free energy of
mixing of an » + 1 component solid solution in terms of
n independent compositional variables r, rs, . . ., r, (ar-
ranged as the elements of a vector, 7), T and P. Note that
analytical expressions for the first and second composi-
tional derivatives of this function (see appendix for general
methods of obtaining these ) are utilized here and are nec-
essary for the specification of the chemical potentials of
endmember components.

(step Ob) For each endmember of the solid solution, compute
the quantity Au as defined above. This will require spec-
ifying a reference bulk composition for the liquid phase,
the availability of a model for computation of chemical
potentials of components in the liquid, and the availability
of thermodynamic data for the standard state properties
of endmember solid components.

(step 1) Solve Eqns. 8, 9, and 7 for (X;, X3, ..., X, ) and
transform the result (if a component transformation is
necessary ) into the reference point 7,4. This is the solution
to the problem assuming ideal mixing in the solid. Using
the derived values of (X}, X3, ..., X, )i and Eqn. 6 obtain

Ayq. If the “solid solution” has only one component (i.e.,
the saturation state for a pure endmember solid is in ques-
tion ), then exit the algorithm: 4,4 gives the saturation con-
dition. For the trivial case of an ideal solution model, the
correct answer is also obtained at this step, and the algo-
rithm should be exited.

(step 2) Use Fiq and Aj4 as an initial guess to minimize the
function ® defined by Eqn. 10. Note that the solid activity
terms in Eqn. 10 are entirely determined by specifying 7
and the stipulated 7 and P. Minimize 9 using an algorithm
based upon Marquardt’s method, which incorporates a
mechanism for keeping the solution vector within feasible
bounds (see Appendix and algorithm 23, Modified Mar-
quardt method for minimising a nonlinear sum-of-squares
Sunction, of NASH, 1990).,

(step 3) Evaluate the function value of ¢ at the minimum
obtained in step 2. If ® is zero, exit the algorithm.

{step 4) Compute the direction of minimal curvature of Gmix
at 7,4 by minimizing the Rayleigh quotient given by Eqn. 12
using Algorithm No. 25 (Rayleigh quotient minimisation
by conjugate gradientsy of NASH (1990). This yields a uni-
directional search vector { ¥, ) which defines a pseudo-
binary section through G™*,

(step §) Minimize G™*P™ (Eqn. 14) with respect to A using
Algorithm No. 17 (Minimisation of a function of one vari-
able) of Nass (1990). Use Ty as an initial guess to the
minimum of G™*P™ _ Construct a new initial guess (Fyq
+ Apin Fmin ) 10 the minimum of ¢ from the result.

(step 6) Utilizing the new initial guess computed in step 5,
minimize ® according to the method discussed in step 2.

(step 7) Evaluate the function value of & at the minimum
obtained in step 6. If ® is zero, exit the algorithm.

(step &) Maximize G™*P™ (Eqn. 14) with respect to A by
minimizing —G ™" ysing the algorithm mentioned in
step 5. Use Fiq as an initial guess to the maximum of
G™*Pel This procedure results in Ang, .

{step 9) Compute a new initial guess to the minimum of
GMxpol a0 Fro 4 (Amax + AA)Fmin, Where AN is a small
number with the same sign as Ap... Minimize G™*Prj
with respect to A as in step 5. This results in a Ay, different
than that obtained previously.

(step 10) Use the value of A;,, obtained in step 9 to construct
a new initial guess (Fig + Amin min ) 10 the minimum of $.

{step 11) Utilizing the new initial guess computed in step 10,
minimize ¢ according to the method discussed in step 2.

(step 12) Evaluate the function value of ¢ at the minimum
obtained in step 1. If ® is nonzero, report a failure of the
algorithm.

In the software package MELTS (GHIORSO and SACK,
1994, the above algorithm is implemented in the C pro-
gramming language and is used to solve problems involving
solid phases with up to seven components coexisting with a
twelve-component silicate liquid. As an additional compli-
cation, the solid solution models employed in MELTS gen-
erally involve internal “ordering” parameters which account
for the energetic effects of composition, temperature, and
pressure-dependent cation ordering. The procedure imple-
mented in MELTS is highly successful in finding the global
minimum in $ and is used to calculate the onset of saturation
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of a particular solid phase. This is effected by examining the
sign of the chemical affinity which results from solution of
the above algorithm. Positive affinities indicate undersatu-
ration and negative affinities indicate supersaturation. When
supersaturation is detected for a particular solid, that solid is
added to the list of stable phases in the system with the com-
position indicated by the above algorithm. This composition
is then refined and the mass of the precipitated solid calculated
by direct minimization of the potential function which char-
acterizes thermodynamic equilibrium in the system {(c.g..
GHIORSO, 1985; GHIORSO and KFELEMEN, 1987. GHIORSO
and SACK, 1994). The algorithm described here could be
used to calculate the energetic drive for crystal growth in
magmatic systems { GHIORSO. 1987) or be utilized to estimate
the driving force for crystal dissolution reactions, Compared
to previous algorithms proposed for computing the saturation
condition of multicomponent solids precipitating from
aqueous solutions (REED, 1982; HArVIE et al., 1987) or sil-
1cate hquids (GHIORSO, 1985). the proposed algorithm is the
only one that returns directly the chemical affinity of the
disequilibrium process. When timed against the algorithm of
GHIORSO (1983) on identical problems. the algorithm pro-
posed here is about an order of magnitude more efhcient.

Detection of Instability Within a Homogeneous Phase

In this section, an algorithm is developed to address the
question of the thermodynamic stability of a homogeneous
phase with respect to unmixing. In the normal practice of
computing equilibrium phase proportions by potential min-
imization techniques, this question arises at the close of every
minimization attempt. Some check must be made as to
whether, in the course of minimizing the energy of the system
and consequently computing the compositions and propor-
tions of the specified phases in the assemblage, the compo-
sition of some phase has not inadvertently become metastable.

For example. in computing phase equilibria in magmatic
systems, as crystallization proceeds, the liquid composition
may evolve so as to become metastable with respect 1o two
coexisting immiscible liquids. Once this metastability is de-
tected, two liquids are specified to the potential minimization
procedure, and the process of computing the equilibrium
compositions and proportions is repeated. A check for the
intrinsic stability of each phase in a computed “equilibrium”
assemblage is demanded because algorithms which determine
phase proportions and phase compositions by potential min-
imization techniques. assume that the phase assemblage
specified at the onset is the final phase assemblage. These
algorithms vary only the proportion and composition of each
phase in order to minimize the energy of the svstem. Because
a check for instability must be made for every phase in an
assemblage, we require a rapid algorithm that is applicable
to phases with highly nonideal Gibbs energy surfaces. The
algorithm presented here meets this challenge.

The procedure is developed by describing first a two-com-
ponent example, then a three-component example, and fi-
nally by stating the general algorithm. Consider a two-com-
ponent regular solution with an interaction parameter of 20
kJ at a temperature of 1000 K. Recall that this model was
utilized as an example for the previous algorithm and that
the molar Gibbs free energy of mixing of this solution is
plotted in Fig. 2. The minima in (™" are located at Y-values
of 0.1692 and 0.8308. Any composition interior to this in-
terval 1s metastable with respect to unmixing. Suppose a tan-
gent line is drawn to the ™ curve at the point 0.1692. This
line is obviouslv horizontal and intersects the ™ curve at
the other minimum. Now, we subtract the Gibbs energy given
by this tangent line from (™. The result. AG, is plotted as
the heavy curve in Fig. 4. Note that this new curve simply
represents the original ™ function translated so that the
minima now occur at a AG value of zero. Next, consider
constructing a tangent line to the ™ curve at some smaller

(RNTEN

~
~
~

I i

0.6 0.8

FIG. 4. Plot of the function defined by Eqn. 15 for a binary regular solution (W equal 20 kJ, 7 equal 1000 K) with
a reference composition (7) chosen at three points of tangency: X equal to 0.13 (outside the solvus), X equal to
0.1692 (along one limb of the solvus), and X equal to 0.18 (within the solvus). The dashed lines correspond to_the
orientation of the tangent line with respect to the molar Gibbs free energy of mixing curve at the indicated composition.
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FIG. 5. Contour diagrams of the function AG (Eqn. 15) for a
three-component regular solution with W,;, W,;, and W,; chosen
to be 50, 0, and 20 kJ, respectively. Contours are in kJ. The tem-
perature is assumed to be 1000 K. Reference compositions are denoted
by the horizontally ruled dot along the 1-3 join and are given by

X-value, say 0.15. If the Gibbs energy values given by thi§
tangent line are subtracted from G™™, the result is the AG
vs. X curve labeled 0.15 in Fig. 4. The equivalently labeled
dashed line in Fig. 4 indicates the orientation of the tangent
line with respect to G™*. The same procedure may be applied
to a tangent line of the G™* curve at some X value inside
the metastable region, say 0.18. The resulting AG function
is also plotted in Fig. 4. Notice that the function AG(0.15)
is greater than or equal to zero for all X, whereas the function
AG(0.18) is negative at large X. This result can be generalized
to the rule that AG will always be greater than or equal to
zero if the tangent line is evaluated outside the metastable
region, and it will be somewhere less than zero if the tangent
line is evaluated inside the metastable region. This rule sug-
gests an algorithm for detecting instability.

Consider the result of minimizing a particular function
AG, which has been constructed at a point of tangency cor-
responding to some composition of unknown stability. If we
choose as an initial guess for the minimization algorithm
some composition very close to X equal to zero or one, the
procedure will locate either the left or right minimum of AG.
If the minimization is performed twice, once with each of
these initial guesses, both minima will be found. One of the
two minima identified by the procedure must be located at
the point of tangency, i.e., the initial composition being in-
vestigated for stability (see Fig. 4). That minimum may be
discarded from consideration. If the function value of AG at
the other minimum is positive, the composition under in-
vestigation is stable. If it is negative, the composition speci-
fying the point of tangency is metastable, and will most likely
unmix to a second phase with a composition given approx-
imately by the location of this second minimum. Let us see
how this approach works in a three-component system.

Assuming the composition (X, X;) equal to (0.30, 0.01)
and the Gibbs free energy of mixing surface plotted in Fig.
3a, a tangent plane may be constructed to the Gibbs surface
at this composition, and a function AG evaluated in a manner
analogous to the binary. A contoured surface of this function
is plotted in Fig. 5a. Utilizing this diagram, the question may
be asked: is the composition (0.30, 0.01) metastable? The
method to answer this question, as deduced from the previous
example, is to locate the minima of AG, discard the minimum
corresponding to the original composition, and evaluate the
sign of the function for the remainder. A glance at Fig. 5a
reveals that the only minimum in AG is at the composition
of tangency; hence, this composition is stable. Formally, this
fact could be deduced by performing three separate mini-
mizations of the function AG, starting each time with a dif-
ferent initial guess. Suitable choices are indicated by the open
dots in Fig. 5a, and correspond to compositions very close
to each of the three endmember components in the system.
The computed descent paths to the minimum are indicated
on Fig. 5. These were obtained using Algorithm No. 21

(X1, X3) equal to (0.30, 0.01) in (a), (0.300, 0.0522) in (b), and
(0.3, 0.1) in (c), corresponding to outside, on, and interior to the
solvus limb. The open dots denote initial guesses for an algorithm
whose objective is to find the minima in AG. Dashed lines and arrows
describe the path to the descent to the minimum. The horizontally
ruled dot near the 2-apex in (c¢) denotes the global minimum in AG.
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(Variable metric minimisery of NASH (1990, In all three
cases, the single minimum is located numerically and we
deduce that the original composition is stable,

Now consider the reference composition (0.300. 0.0522)
which happens to correspond to a point on the limb of the
solvus in this system. The AG function for this case is con-
toured in Fig. 5b. Note that there are now two minima in
A( and that both minima occur at exact zeroes of the func-
tion. These two minima define the orientation of a tie line
across the solvus. These minima may be located by starting
from the same three initial guesses as before, The starting
points near | and 3 result m finding the initial point of tan-
gency. From the point near 2, the minimizer descends directly
to the other minimum and we conclude that the initial com-
position is incipiently unstable. Finaily, consider the reference
composition given by (0.3, 0.1) and the corresponding AG
function contoured in Fig. 5¢. Once agan, there are two
minima in AG. but the one closest to pure 2 is in this case
located at strongly negative values of the function: the initial
composition is well within the solvus and is metastable. Two
of the three initial guesses result in locating the deep minimum
near 2 and one permits descent to the initial composition at
the point of tangency. We conclude that the original com-
position is metastable and deduce from Fig. 3¢ the approx-
imate solvus extent and tie line orientation for the equilibrium
two-phasc assemblage.

Based upon our analysis of the two and three-component
cases. the following general algorithm may be stated.

Algorittun for the detection of thermodynamic instubility in
a phase. al some specified temperature and pressure

{step Oa) Specifv a model for the molar Gibbs free energy of
mixing of an »n + | component solution in terms of »
independent compositional variables . 2, ... i, {ar-
ranged as the elements of a vector. 7). Tand P. Note that
analytical expressions for the first compositional derivative
of this function are utilized in this algorithm. Sc¢e the ap-
pendix for general methods of obtaining these derivatives.

(step Ob) Specify the reference composition. 7. of the
phase.

(step 1) Compute the function

A(;( T) = (r rm\( 7)

Ty

_ n a(;v mix
(I‘m“(?u) + Z . {
PR

(7’”70)}. {15)

which represents the difference between the molar Gibbs
free energy of mixing and a tangent hypersurface to Gm
at 7.

{step 2) Let the n + | endmember components in the solid
solution be indexed on i, and let X', .. .. X,.1 denote the
mole fractions of these endmembers. Let i equal 1:

(step 2.1) Compute a composition X Gee [ Xy Xon L
X, X, ]im) such that

W+ ) . 1
TUon+ DY+

Transform the result {if a component transformation
is necessary ) into the initial guess 7y,

{step 2.2) Minimize the function A given by Eqn. (13)
with respect to 7. Use 7y, as an imitial guess for the
minimum. Algorithm No. 21 of Nast {1990, asi-
able metric minimizer) 1s ideally suited 1o this task.
It requires only first derivatives of the function and
incorporates a provision to keep the solution vector
within bounds during the course of mintmization. Call
the location of the minimum 7,

(step 2.3) I 7, 18 sufficiently™ close to 7y, that is if the
dot product ¥1,.7, is less than some acceptable tol-
erance. then the minimization routine has found the
original point of tangency. Proceed to step 2.6.

{step 2.4) If AG( ¥, ) is greater than zero, then the min-
imization routine has determined that a miscibility
gap exists. but the reference point 7, 1s outside this
gap. Proceed to step 2.6,

(step 2.5) If AG (T ) is less than or equal to zero, then
the reference composition 7, 1s unstable with respect
to unmixing, The approximate tic-ling is given by the
vector Fyy = Fum. The accuracy of this approximation
worsens a5 AG{ T, ) becomes more negative: it is
exact if AG( Fon ) is zero. In any event, 7, provides
an cxcellent initial guess for the composition of the
second phase, if one is required for some potential
minimization procedure.

(step 2.6) Increment /. If 7 > i + 1, then exit the algorithm,
Otherwise. go to step 2.1,

The above algorithm has been implemented in the C pro-
gramming language and has proved successful in detecting
instability in phases with up to twelve components. In prac-
tice, the procedure will occastonally tind the location of more
than one minimum with negative function values, indicating
that the initial composition 1s unstable with respect 1o un-
mixing into more than two phascs. It is found that the best
way to proceed in this eventuality is to add one phase at a
time to the specified list of stable phases in the assemblage.
choosing the 7, which gives the most negative value of AG
from the list of likely compositions. At this point, potential
function minimization techniques are used to determine the
actual compositions and proportions of the coexisting phases,
and the instability algorithm is invoked again. Further insta-
bility, if detected, is similarly dealt with by adding one new
phase at a time. This procedure is numerically stable and
affords the possibility of detecting up to n# + 1 coexisting
immiscible phases from an # + | component model function.

SUMMARY

Two algorithms are developed which address critical as-
pects of the calculation of equilibrium phase relations in
highly nonideal thermodynamic systems. The first deals with
detection of the saturation state of a phase and the second
addresses the issue of the intrinsic stability of a phase with
respect to unmixing. Both algorithms have been implemented
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in C and tested with complex solution models describing
solid and liquid phases in magmatic systems (GHIORSO and
SACK, 1994). The algorithms are intended to support poten-
tial function minimization techniques and are designed for
rapid and repeated execution within a generalized modeling
code.
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APPENDIX

Summary of the Numerical Method for Solving the System of
Simultaneous Nonlinear Equations

The nonlinear system embodied in Eqn. 5 may be efficiently solved
using Marquardt’s method as modified by NASH ( 1990) for bounded
feasible solution domains. We define functions oi(ry, 12, ..., 1, 4,
T, P) in terms of the right-hand sides of each of the # + 1 equations
in(5)

14
0= i = A= T e, (AL-D)
i=1

and form the sum of squares of these quantities:
(A1-2)

The minimum of ® with respect to the n-elements of 7 and the scalar
A is determined at constant temperature and pressure by choosing
an appropriate initial guess ( 7o and A,) to the solution and expanding
@ in a Taylor series in the vector §, defined by:

[T]-[" Al-3
VAL (A1)

Certain simplifying assumptions are employed in constructing the
Taylor series. The series is truncated to second order in g, i.e.,
g I8 g

¥(G) ~ B + ¢3JoG + 5

(Al-4)

and the quadratic term is approximated from the Jacobian of the
nonlinear system:

3*®

1]

where the Jacobian is given by

" ~JTJ, (A1-5)

o o de
ar, ar, 04
J= Lo : ) (Al-6)
OPp+1 . OPn+1 OPn+y
ary or, 94

Equations A1-4 and A1-5 are valid if the initial guess is a good ap-
proximation to the actual solution. The partial derivatives in the
Jacobian matrix may be readily evaluated from Eqn. Al-1:

Aory, ..., I A) sol d et
bt Z\SALEREER/ ARLL R iy S
ar, W ‘2 e ) o,
A (ryy ... Iy A) L4 .
ST T S W - A= S ). (A1)

i=1
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A method for obtaining the compositional derivatives of the solid
chemical potentials is discussed in the next section. The process is
not straightforward if the solid demonstrates compositionally depen-
dent atomic ordering.

A minimum of Eqn. A1-4 is obtained by setting the derivative to
zero and solving for the ““correction”-term, §:

ae(g)

= 0= J3Jog = ~J00. (A1-8)
dq

In practice, if the matrix product J3.J, is not positive definite or if

. . 7 .
the derived vector § renders the solution vector [ 4 unfeasible, then

Eqn. A1-8 is modified by introducing an arbitrary positive constant
X according to:

(I8 + AT = —J o, (A1-9)

where [ is the identity matrix. This constant is referred to as the
Marquardt parameter. The correction vector resulting from solution
of Eqn. A1-9 is used to construct an estimate of the solution of the
nonlinear system by application of Eqn. A1-3. This estimate becomes
the new initial guess of a subsequent iteration. The process is repeated
until the norm of the correction vector is “zero.” At the global min-
imum of Eqn. A1-2, both & and the Marquardt parameter should
have a value of zero.

Evaluation of the Equilibrium Thermodynamic Properties of
Phases with Variable Degrees of Microscopic Order

The algorithms discussed in this paper require the evaluation of
compositional derivatives of the Gibbs free energy and of the chemical
potentials of endmember components of the solid phases. Obtaining
analytical expressions for these derivatives is complicated by the fact
that the energetic description of the solid is often written in terms of
one or more ordering parameters which describe the state of atomic
order/disorder in the crystal (THOMPSON, 1969, 1970). If the solid
is in a state of internal or homogeneous equilibrium, these ordering
parameters are a unique function of composition, 7" and P, and the
derivatives of interest may be completely determined. In this appen-
dix, we summarize a method for obtaining these derivatives. _

In general, the molar Gibbs free energy of a solid solution, G, may
be expressed in terms of a vector of independent compositional vari-
ables, 7, a vector of ordering parameters, §, the temperature, 7', and
the pressure, P, i.e., G(7, 3, T, P). G is an intensive thermodynamic
quantity and may always be related to the extensive Gibbs free energy
of solution by multiplication of the total number of moles of the
phase in the system, #:

G(n,?,3,T,P)=9G(F,3, 7T, P). (A2-1)
It should be noted that the relation embodied in Eqn. A2-1 affords
the basis of transforming any derivative of G into a corresponding
derivative of G. We simply write down expressions for the total de-
rivatives of G:

dG = ndG + Gdn, (A2-2)
d*G = nd*G + 2dndG + Gd*n, (A2-3)

and specify them for the parameter of interest, i.e., Eqn. A2-2 may
be used to “derive”

G G o G
aT "ar  Tar "ar’

since the total number of moles of the phase is independent of tem-
perature. It follows from Eqns. A2-1 through A2-3 that we need only
focus our attention on derivatives of G.

In practice, G is often modeled as the sum of a configurational
entropy contribution and a truncated second-order Taylor expansion
in the composition and ordering variables:

»

GF. 3, T,P)=~TSMF. 3) 4+ Go(T, P) + Y (r,l, + 30, i
[ FEa|
+ 236Gt S Y Gootisi + 2 3 Goysis, (A2-4)
i=1j=1 i=1 =t =1 j=1

where r; denotes one of the n-elements of 7 and s, refers to one of
the m-elements of $. This formulation is highly successful in de-
scribing extremely nonideal solid solutions (GHIORSO, 1990a;
HIRSCHMANN, 1991; SACK and GHIORSO, 1989, 1991a,b, 1994a,b.c).
it should be remarked that Eqn. A2-4 is a formulation of the molar
Gibbs free energy which is applicable to an arbitrary (in general a
disequilibrium) state of order. As the higher order Taylor expansion
coefhicients are usually taken to be constants, it is a straightforward
matter to evaluate analytically partial derivatives of Eqn. A2-4, with
respect 7, ¥, T or P. Thus, expressions like Eqn. A2-4 may be ma-
nipulated in conjunction with the generalized form of Darken’s re-
lation (GHIORSO, 1990b)

=G+ Z/.(r) +Zg.(s, (’. (A2-5)

J=1 J=1

to provide algebraic expressions for the chemical potentials of end-
member solid components. The functions f; and g; in Eqn. A2-5 are
determined by the stoichiometry of the endmember component
{(GHIORSO, 1990b).

Let us focus on deriving expressions for the compositional deriv-
atives of these endmember chemical potentials, specifically, derivatives
which are appropriate for the algorithms presented in this paper and
represent variation of the chemical potential in an equilibrium state
of internal order. The methods employed will be generally applicable
to any 7, T, or P derivative of y; or G that may be required.

From Eqn. A2-5, the total derivative of u; may be written (assuming
constant 7 and P):

du, = dG + z[dr,(r, a('+f,(r,)d( )J

Jj=1

m

G 5
+a[dg,(5,) +g.(s,)d( )] (A2-6)

J=t

We specify Eqn. A2-6 to reflect the total derivative of u;, with respect
to an infinitesimal variation of the k' element of 7:

G
d(—)
du_dG  di(09G L "’f
dr,\ dr,, dl'k ak ;l_‘l (1)
L6}
m d(as,-
+ 2 gi(sj)T (A2-7)

J=1
Note that Eqn. A2-7 has been simplified by recognizing that the

elements of 7 are independent, i.c., f( LIAG) = 0 for j # k, and that

the ordering state in the general (disethbnum) case is not a function
dgi(sj)
Tk
result, but implies that the derivative defined by Eqn. A2-7 needs yet
to be projected to, or evaluated for, the equilibrium ordering state.
Given that the total derivative of G may be expressed as
" 3G 3G
Z dr + 2 — Bs,-

j= j=1

of composition, i.e., = 0. This is an extremely convenient

— 8dT + VdP,  (A2-8)

we obtain the first term on the right-hand side (rhs) of Eqn. A2-7:
a'G 6G m 59_@__ ds;

. (A2-9)
dI’A ark =1 aS] drk



Phase stability in heterogeneous systems 5501

(] G
Writing d(a—G) and d(—
ar; 09s;

proceeding to specify this quantity for dry, vields

3)
ar; %G m 827 ié_l

) in a manner similar to Eqn. A2-8 and

=+ > — A2-10
drk arjark -1 arjas, dl’k ( )
and
G
3)
i 25 mo 4245
’ :6G+ 66@4 (A2-11)
dry ards; -, 95,08, dr,

Thus, all the total derivatives on the rhs of Eqn. A2-7 may be ex-

pressed, using Eqns. A2-9, A2-10, and A2-11, in terms of simple

partial derivatives and the total derivative matrix, F . The requisite

r

partial derivatives may be computed directly from the definition of

- . .43 . . .

(. The total derivative matrix, F , is undefined unless a relationship

r

is specified between ordering state and composition. The natural re-

lation is the requirement of internal or homogeneous equilibrium.
The condition of homogeneous equilibrium is specified by setting

G - .
the vector s equal to zero. This is the mathematical consequence

of the stipulation that the Gibbs free energy must be minimal, with
respect to variation of the ordering parameter(s), if the phase is in
a state of homogeneous equilibrium. Writing this condition out ex-
plicitly,

3G

% 0 01(F, 5 T, P)
== s . (A2-12)

G 0 Ol P Fes T, P)

as,,

demonstrates that the problem involved in computing equilibrium
values of ¥ is really one of solving m nonlinear equations in m un-
knowns. The unknowns are the m-elements of $.,(7, T, P). Equation
A2-12is usually solved using Newton’s method (NASH, 1990). Now,

, where the vertical
Teq
line implies evaluation of the quantity to the left of the line at the
“point” specified on the right. We can write the total derivative in
the usual manner:

86

. . G
let us consider the j™ element of the vector e

25

G maG
d(— ) = drleg + 2 ——| ds
asils M ic Ondsls lea E,as,-as, e tlea
9’G 3G
+ Tleg + —— .
aTas, lea * 3Pds; dPle.  (AZ-13)
j l3eq ) 1feg

The lefi-hand side of Eqn. A2-13 is zero. This is because any variation

is zero since E is constant (and also happens to be equal
T Sil30q
to zero) in the equilibrium ordering state. Evaluating the lhs of Egn.
A2-13 at constant 7" and P for an infinitesimal change in r, yields:

of E
Sj

= 0'G 5 %G s (A2-14)
ondsjl, iy 0508/, dnil,,
L .. ds d. L
which is a linear equation in = £2 v ﬂ . We may com-
drkeq drk ea drk ea

bine statements of Eqn. A2-14 for all # elements of 7 and all m
elements of § into a matrix equation:

26 G

ar, 95, ar,as,

3G 9°G

ar,8s,, O705m | lseq
vg - 20| [4 ds
ds, ds, 35,058, dr, ea dr, eq
A i dsm dsm
35,08, 05m08m | | dr, e dr, -

(A2-15)

Equation A2-15 may be used to solve for the elements of the matrix

a7 in the particular case of homogeneous equilibrium. Note that
¥

eq

. d3| . . . .
a solution for 77 is always possible, since the matrix of second-
7

eq

g
partial derivatives, 3393 N
be positive definite since the Gibbs energy is minimal in the equilib-
rium ordering state.

All of these results may be assembled to rewrite Eqns. A2-5, A2-
7, A2-9, A2-10, and A2-11 in the equilibrium ordering state. Equation
A2-5 becomes:

, is guaranteed to have an inverse; it must

9G

, A2-5
o, ( eq)

w® =Gl + 2 filr)
J=1

Sea

. G .
since all the elements of 33| 2 zero. Numerical values of $,q are

}eq
computed by solution of Eqn. A2-12. Similarly, Eqn. A2-7 becomes:
G
du| dG| | di(n)éG| I d(ﬁ)
-JEE = E— + M —_— + Z ﬁ(r]_) _.—J
rkcq rkcq drk é)rk e J=1 drk Feq
oG
d(ﬁ)
m 65]
+ El 8i(Sjeq) . - (A2-7 eq)

and Eqns. A2-9 through A2-11 simplify to:

dG G
an , (A2-9 eq)
drk eq ark Sea
(%)
Il 86 L3 26 dy (A2-10 eq)
= -—_ R -10 e
dri leq 01 (=1 ar;0s; i drkeq q
and
P
1) e
7| _ %6 5 0G| dy (A2-11
dric lea  Ondsils i 9508ty dndy, |’ -11 eq)

. . d3| . . .
respectively. The matrix E is obtained by solution of Eqn.
eq

A2-1S.



