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Abstract-Two critical aspects of the computation of equilibrium phase relations in highly nonideal 
thermodynamic systems are discussed: ( 1) identification of the saturation conditions and likely com- 
positions of a suite of phases relative to a pervasive fluid phase, and (2) detection of phase separation 
within a homogeneous phase and estimation of compositions in the resulting equilibrium multiphase 
assemblage. New algorithms are described which address both of these problems in multicomponent 
thermodynamic systems and numerical results are presented for two and three component cases. An 
appendix illustrates a method of deriving analytical expressions for derivatives of the Gibbs free energies 
of phases characterized by internal “ordering” parameters. 

INTRODUCTION 

EQUILIBRIUM PHASE relations in multicomponent thermo- 
dynamic systems are usually computed by solving sequen- 
tially three interdependent subproblems. Initially, an estimate 
must be made ofthe identity, proportions, and compositions 
of phases in the system. Secondly, this estimate must be re- 
fined, in order to satisfy exactly the equilibrium condition 
for the specific set of imposed constraints, e.g., minimize the 
Gibbs free energy under the constraint of constant temper- 
ature, pressure, and system bulk composition. Thirdly, the 
resulting assemblage must be evaluated for potential meta- 
stability: derived phase compositions must fall outside mis- 
cibility gaps and phases not included in the system must be 
less stable than those currently in the equilibrium assemblage. 
This three-stage problem is solved iteratively and is the basis 
of modern computer algorithms for the computation of 
chemical equilibria in geochemical systems (SMITH and MIS- 

SEN, 1982). If the phases in the system are ideal or approx- 
imately ideal, then the first and third stages ofthe calculation 
are straightforward and attention may be focused on the nu- 
merical problem of refining the equilibrium state from the 
initial guess. Historically, this problem has received the 
greatest attention, and for geochemical systems, the usual 
method of solution is some form of potential minimization. 
When attempts are made to calculate equilibrium relations 
in systems containing highly nonideal phases, more attention 
must be directed at the first and third stages of the calculation. 
Indeed, the most difficult and time-consuming aspect of the 
entire calculation can be establishing an initial guess of phase 
compositions and proportions for the potential minimization 
procedure. This paper presents two algorithms designed to 
rapidly estimate equilibrium phase compositions in geo- 
chemical systems dominated by highly nonideal phases. Spe- 
cifically, methods are presented for ( I ) the determination of 
the saturation condition and composition of a phase in a 
system containing a pervasive fluid phase and (2) the detec- 
tion of phase separation within a homogeneous phase and 
estimation of the compositions of the resulting multiphase 
assemblage. These algorithms are incorporated into the 
MELTS software package ( GHIORSO and SACK, 1994) which 
models chemical equilibria in magmatic systems. They should 

however, be equally applicable to systems dominated by an 
aqueous or gas phase, and may find use in modeling water/ 

rock interaction or the vapor sublimation of solids. 
This paper is organized into three logical sections. The 

phase stability algorithm is discussed in the first and the phase 
separation algorithm is outlined in the second. Implemen- 
tation of either algorithm depends on the ability to evaluate 
analytically, first and second order compositional derivatives 
ofthe Gibbs free energy of any phase in the system. The final 
section of the paper (provided as an appendix) describes a 
method of obtaining these derivatives for solution models 
parameterized in terms of both compositional and ordering 
variables. Such formulations are typically invoked to model 
the Gibbs free energies of solid solutions with temperature, 
pressure, and composition dependent cation ordering. 

Estimation of Phase Stability in Thermodynamic Systems 
with a Fluid Phase 

Consider a thermodynamic system ofp-components which 
has at least one p-component phase. For context, one might 
imagine a magmatic system containing a molten silicate liq- 
uid. Let us investigate the problem of determining the sat- 
uration condition of a solid phase, with respect to a particular 
bulk composition of this liquid, at certain specified values of 
temperature ( T) and pressure (P), Specifically, we seek a 
quantitative estimate of the extent of under- or super-satu- 
ration of the solid with respect to the liquid, which implies, 
if the solid in question is itself a multicomponent solution, 
a determination of the composition of the solid which comes 
closest to being in equilibrium with this liquid at the specified 
T and P. This problem has an elegant geometrical solution 
and is easy to visualize in a two-component system. 

In Fig. 1, we plot hypothetical Gibbs free energy surfaces 
for a two-component liquid (dark gray) and solid (white) at 
three saturation conditions. A tangent plane to the liquid 
Gibbs surface is also indicated. Its point of tangency corre- 
sponds to an assumed liquid bulk composition. The solid is 
undersaturated with respect to the liquid if its Gibbs surface 
is always above this tangent plane (Fig. 1 a), supersaturated 
if it plunges below this plane (Fig. Ic), and at saturation if 

the tangent plane intersects the solid surface at one and only 
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FIG. I. Sketch of the molar Gibbs free energ! surfaces of two phases in a two-component bystem. The vertical axi9 
measures the Gibbs free energy of the system. while the horizontal axes, in and out of the page, describe compositional 
variation. A plane is drawn tangent to the phase denoted by the gray-colored mesh surface at some specified reference 
composition. External conditions (i.e.. ‘f’, P) arc varied such that the second phase (denoted by the white-colored mesh 
surface) is undersaturated (a). saturated(b). and supersaturated (c). with respect to the first at this reference composition. 
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FIG. 1. (Continued) 

one point (Fig. lb). As a tangent plane to the Gibbs surface 
may be defined in terms ofchemical potentials ofcomponents 
in the phase (DARKEN and GURRY, 1953 ), the last diagram 
is nothing more than a visualization of the condition of the 
equality of chemical potentials in all phases in a system at 
therm~ynamic equilibrium. If. for the und~rsatu~ted (Fig. 
la) or supersaturated (Fig. lc) states, one imagines a tangent 
plane to the solid surface which is parallel to the tangent 
plane of the liquid, then the point of tangency of this plane 
to the solid surface defines the composition of the solid “most 
nearly” or “closest” to equilibrium with the liquid. If we 
extend a vertical chord from the solid Gibbs surface at this 
particular composition until it touches the liquid tangent 
plane, the length of this chord is the chemical affinity: an 
energetic measure of the extent of under- or super-saturation. 
It follows that in a two-component system, the chemical af- 
finity is nothing more than the offset between two mutually 
parallel tangent planes. For a the~~ynamie system of more 
com~nents, the principle is the same. A tangent hy~~u~ace 
is extended from the liquid Gibbs surface at the bulk com- 
position of the liquid and a particular solid composition is 
identified, such that a tangent hypersurface to the solid Gibbs 
surface at this composition is “parallel” to that of the liquid. 
The energetic offset between the two hypersurfaces is the 
chemical affinity. The algorithm proposed here performs this 
geometrical evaluation numerically. 

We assume the composition of the liquid (or more gen- 
erally the fluid) is described by p-thermodynamic compo- 
nents, identified by c?, c;~, . . . , ~2. The solid, whose sat- 
uration condition is to be determined, is defined in terms of 
n + I components (for reasons which will become clear be- 
low), identified by cp’, ry’, . . . , r?,“‘, c$~. In practice, due 

to limitations in our ability to construct comprehensive 
models for mineral solid solutions, n + 1 is often less than 
p. Dissolution of the solid into the liquid may be symbolized 
by the following set of chemical reactions 

where the Vi,j are stoichiometric reaction coefficients trans- 
forming solid to liquid components. The Gibbs free energy 
change (AG) for each of the reactions in Eqn, I may be 
written 

-AG,= 5 liq 
vn,lPi 

so, 
- Cc* 

where g{ refers to the chemical potential of the Ph component 
in thejih phase. The left-hand sides of the system in Eqn. 2 
are zero if the liquid is saturated in the solid. In general, the 



individual AG,s in Eqn. 2 may be replaced with the chemical 
affinity, ,4, if we specify that the composition of the solid be 
chosen to be the “nearest equilibrium” composition discussed 
in the previous paragraph. This follows from the requirement 
that the tangent hypersurface to the solid Gibbs energy at 
this particular composition must be parallel to that of the 
liquid. In other words. the energetic offset of the two hyper- 
surfaces in each component direction (i.e.. the X;,s) must 
be identical (equal to 4 ), otherwise. the hypersurfaces would 
not be parallel. With this stipulation, Eqn. 2 becomes 

independent compositional variables. Utilizing the identity, 
.I \,>I ] ni I \ %I’ . . 1~ ::‘I. permits calculation of the 
II + I activity terms. and the set of unknown\ in Eqn. 5 
becomes j .\ ;“I. , .\’ ;;” . I ; In general, the composition 
of the solid may be specified by the set of parameters r,, I’:. 

. r,,. which may or may nor correspond to the tirst II com- 
ponent mole fractions. 

If the solid is an ideal solution. the system in Eyn. 5 has 
an analytical solution. Setting activity equal to molt fraction, 
we rewrite Eqn. 5 as 

I’ 0 = R7‘ln ( 1 1.y” * . . -. .Y F:“) - .1 t .!+,, , , (6) 
-.4 = 2 v,,,/.lJlq - CL:;” Subtracting the 17’~ equation from the rest eliminates the 

i-1 
chemical afinity term and establishes a relation between the 

-,,I = 5 IKl V,,il.,Pr P;;;, ) (3) first 17 I and the 17’~ mole fractions: 
I_ I ,.?;“I : /j, ,‘i.pl 

which may be rearranged to yield 

0 = & - .-l - 2 v,.*pjlq and 
,= I 

x;:” = /j,,( [ y;“’ . . . -x’;:“), (8) 

() = @yl _ .3 ~- i v,,,,/p 
,m I 

0=/&,-.4-i llq V,,t l.,fiLi (4) 
I I 

Finally, the system of equations in Eqn. 4 may be simplified 
using the following identities: 

Substitution of Eqn. 7 into Eqn. 8 results in a solution for 
x’ ?’ 

x n so, = 8, (9) [I +&(I +/J, + *** +I% ,,I. 
where cl, is the activity of the jth component, R is the gas 
constant, and the superscript zero refers to the standard state.* 

Evaluation of Eqns. 9 and 7, along with any one of those in 

This results in 
the system stipulated in Eqn. 6 provides a unique solution 
for the saturation condition in the case of an ideal solution. 

0 = RT In LIP’ - .-I + Ap, For the general case of nonideal activity composition re- 
lations, the solution of the nonlinear system in Eqn. 5 is 
effected by forming the sum of squares of the right-hand- 
sides of the system. i.e.. 

0 = RT In uSp’ - A + Ap,> 

0 = RT In ~(2, ~ ‘4 + &I~+,. (5) 

which is the mathematical embodiment of the geometrical 
construction illustrated in Fig. 1. 

Equation 5 represents a system of 11 + I equations in n 
+ I unknowns. The unknowns are the chemical affinity for 
the solid-liquid reaction and the n-independent composi- 
tional variables which when specified, define uniquely the 
activities of the n + 1 thermodynamic components. For 
example, we might choose the first n mole fractions (X) as 

* Here, defined as unit activity ofthe pure substance (endmember 
solid component) at any T and P. 

and minimizing this sum of squares with respect to the un- 
known affinity and composition variables. The numerical 
technique used in the following examples and suggested for 
general implementation is based upon a modification of 
Marquardt’s procedure (NASH, 1990). The technique and 
modifications are discussed in the appendix. Unfortunately, 
finding the minimum of Eqn. 10 is fraught with difficulties. 
Most of the problems and the numerical tricks to work around 
them, can be illustrated using a simple two-component ex- 
ample. 
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Consider a two-component solid solution with activity 
composition relations given by a regular-solution model: 

a?’ = Xexp[ W(\;X)‘] 
wx2 

of’= (1 -X)exp F 
1 I 

(11) 

For illustration, we choose a regular solution parameter ( W) 

of 20 kJ, a temperature of 1000 K, and values of A&, and 
Aplz equal to 1 and 2 kJ, respectively. Substituting Eqn. 11 
into Eqn. 10, permits construction of a plot of 9 as a function 
of X for a given value of A. In Fig. 2, we plot + vs. X for the 
regular solution model, adopting a value for A of -0. I kJ. A 
simitar curve for ideal activity-composition relations is also 
plotted and corresponds to a value of .4 of 4.3 kJ. These 
affinities were chosen in order to make @ evaluate to zero 
somewhere in the interval 0 5 X 5 1. They are the optimal; 
adopting other values cause + to be strictly greater than zero 
over this interval. An examination of Fig. 2 reveals that even 
though we have purposely chosen a very simple nonideal 
model for the activity-composition relations of this solid so- 
lution, this model generates multiple minima in 9. The so- 
lution sought is the one with the deepest minimum, the so- 
called “global” minimum. The numerical algorithm used to 
minimize Eqn. 10 must find that minimum or the answer 
will not be physically realistic. Herein lies the problem. The 
minimum found by the algorithm will depend on the specified 
initial guess of its location. This is because all numerical 
methods aimed at this class of problems work by accepting 
some initial guess to the minimum, by computing a “down- 
hill” search direction at that guess, and by proceeding in the 
indicated direction until the minimum is reached. These 
methods are int~nsically “local” and there is no way to know 
if the minimum found is the answer sought, without bringing 

0.2 0.4 0.6 0.8 
X 

FIG. 2. Plot of ( I ) the molar Gibbs free energy of mixing (G”‘“) 
of a two-component regular solution ( W equal 20 kJ, T equal 1000 
K). (2) the function Q, (Eqn. 10) for this solution (Ap, equal I kJ, 
Ah, equal 2 kJ ). and (3) a function @ for the CorresDondinr! ideal 
solution. The mole fraction (X) of the first componeni is plotted on 
the ordinate. The arrows labeled Gmi. denote the minima in cm‘“, 
that labeled Id denotes the minimum in &, and those labeled M,, 
?n2, and nlB refer to minima in a. 

to the method additional information regarding the nature 
of the global minimum. In the case of the function Cp we 
know that the global minimum has a function value of zero, 
and therefore have a criteria for identifying false solutions. 
What is needed, is a procedure to compute insightful initial 
guesses. 

Examining Fig. 2, it may seem quite obvious how to pro- 
ceed. Simply choose an initial guess to the right of the hump 
in the function that occurs at an X value of approximately 
0.7. Of course, that is the logical way to proceed, but it is not 
a sufficiently general approach to be applicable to higher di- 
mensional problems or those with more complex Gibbs 
functions. We need a general and systematic algorithm. Con- 
sider the following approach. Choose as an initial guess for 
the nonlinear minimization algorithm, values of X and A 
which correspond to the solution for ideal activity-compo- 
sition relations. This initial guess has two important advan- 
tages: ( I ) It can be computed uniquely for arbitrarily large 
systems, and (2) it can be computed analytically and therefore 
rapidly. The composition given by this solution is labeled by 
the arrow “Id” in Fig. 2. Fueled with this initiat guess, the 
nonlinear minimization algorithm proceeds to the local min- 
imum labeled by m2 in Fig. 2. This is a false minimum, which 
is detectable because the function value (a) is nonzero at 
this composition. Now, the strategy is to guess where the 
global minimum in @ is likely to be, since the “easy to com- 
pute” initial guess failed. Note that in Fig. 2, the additional 
local minimum in % (labeled tn,) and the global minimum 
(labeled m,) are crudely associated with minima in the Gibbs 
energy of mixing function of the solid. Perhaps recomputing 
an initial guess corresponding to one of the minima in the 
solid Gibbs function (C?““) would be a better choice? Finding 
these minima in cm” is itself computationally costly, in that 
an iterative procedure must be used. However, the minimi- 
zation of GmiX is a one parameter (X) problem and fast nu- 
merical algorithms are available (see below). To find the 
minimum in cm”, the algorithm needs to start somewhere; 
it requires its own initial guess to get going. We choose X,,. 
The downhill direction leads to larger values and eventually 
to the X-value labeled Gmin in Fig. 2. This value, along with 
the value of & determined previously, is used as an initial 
guess to minimize the function a. The global minimum at 
mp is found successfully by the algorithm starting from this 
new guess. Will this procedure always work? It is apparent 
from Fig. 2 that the reason this sequence of trials succeeded 
in finding the global minimum is because the riot-hand 
minimum in Gm’” was located and provided the new guess 
for location ofthe minimum in a. This is a direct consequence 
of the fact that X1, (the starting point in the search for G,i,) 
is located to the right of the maximum in the &“1x surface 
at 0.5. Suppose, for discussion, X,, happened to be slightly 
smaller than 0.5. Then the @“j’ minimization procedure 
would have led to the left minimum, and the Q, minimization 
procedure would have found ml. In this eventuality, one last 
attempt can be made to find the global minimum in 9. Start 
once again from X1, to minimize cm’“, but this time move 
in the uphill direction, past the maximum in cmix, to find 
the minimum located on the other side of this maximum. 
This procedure eventually results in the correct identification 
of mg I 
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FIG. 3. Analysis of phase saturation conditions involving a three- 
component regular solution. Ci’,2, M’,3, and U’>, arc chosen to be 
50, 0. and 20 kJ, respectively. $I,. Apz, and Aw3 are taken as 1. 3. 
and 2 kJ. The temperature is assumed to be 1000 K. (a) Contour 
diagram. in kJ. ofthe molar Gibbs free energy of mixing (CT”‘“). (h) 

Having deceloped empirIcally an algorithmic strateg). 

wpposc WC trq this procedure with a three-component solid. 

Consider 3 regular solution with II’,,. II’, <I ;ind II’,; Lqu:~1 

to 50. 0. and 20 kJ, respecti\&. For the sake of illustratic\n. 

we assume values of _!+ -1fic2, and &I~ of I. ,: md 2 Id. 
L’igurc 3a provides ;I contour map of the Gibbs Ii-cc cncrg! 

of mixing for this solution and Fig. 3b and c displs! contours 

of the logarithm of the 117 function assuming idcal mixing 

(31). with an atlinit! of 7. I74 kJ. and the regular solution 

model (3~). with an afinit! of 4.326 kJ. As in the pre\iou\ 

example. the affinity values chosen for plotting arc optimal 

and allow + to ha\e a value ofzero somewhere in the ternar) 

The global minimum in 4) is located very clot to the I- 

3 join and is indicated b> the black dot in Fig. 3. ‘The dot 

tilled with horizontal rules denotes the position. (,\, . .kl),,l_ 
ofthe minimum in 41 determined by assuming that the solid 

is an ideal solution. Figure 3b clearly shows this minimum 

in &. Following the proccdurc suggested above. (.\‘, , \‘2)Id 
is used as an initial guess to locate a minimum 111 +. It can 

be seen from Fig. 3~. that the downhill direction from this 

initial guess leads ultimatcl) to the gray-tilted dot which plots 

near the 2-3 ,join. This is :t false minimum. .-\ nc’v~ initial 

guess needs to be computed. The procedure cl~cloped I& 

the two-component case suggests returning to the point ( \., . 
.Y2),,, and proceeding from that point to the closest minimum 
in (1;“1” In the two-component case. that was  an easy min- 

imization problem in one parameter. In the prrscnt cast. it 

is a multidimensional minimization problem. which is com- 

putationally costly and becomes progressively more difficult 

to solce as the number of components in the solid solution 

increases. Ideally. WC \~ould like to take ad\antagc of [he 

simplicity ofthe tv,o-component minimiration algorithm b! 

searching within some pseudobinary section 01’ ihis threc- 

component system. performing 3 one parameter minimiza- 

tion along an optimal11 chosen search dircctmn that most 

likely points towards minima in (7”“‘. 7‘hi4 p5cudohinarh 

section is given by the “direction of minimal cur\~aturc” ot 

CT”“‘. and corresponds to a \cctor which starts at ( 1,. \z)lLi 
and extends in the “most downhill” direction from that point. 

The direction of minimal cur\aturc is provided 1~) the min- 

imum of ;L function ( BAKKO\. 107% ). 

known as the Rayleigh Quotient. In Eqn. 12. p is defined in 

terms of a scalar-valued function of a vector ( 7) of concen- 

tration variables. In the three-component case being consid- 

ered. 7 is given by the vector [.I’, , AZ] and T,, refers to the 

Contour diagram of log ( ald) evaluated for an ideal three-component 
solution with &.I, as specified atwe. An affinity value of 7.174 kJ 
was used, (c) Contour diagram of log (a) for the regular solution 
with &L, as specitied above. An affinity value of 4.326 kJ was used. 
In all three diagrams, the horizontally ruled dot denotes the minimum 
in (Pldr the black dot the global minimum of a, the stippled dot a 
local minimum in +, and the open dots define minima in the cm’* 
surface along the pseudobinary (dashed line) defined by the direction 
of minimal curvature of Pi’ at the point denoting the minimum of 
Rd. 
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point (X, , X2),,. Note that the second derivative matrix of 
emix needs to be computed only at the point Pld. The min- 
imum of p with respect to f is given anal~i~liy by (NASH, 
1990): 

(13) 

Equation 13 may be recognized as a familiar eigenvector- 
eigenvalue problem. In order to minimize p, the particular 
solution of Eqn. 13 is sought that corresponds to the smallest 
eigenvalue (Pmin) and its associated eigenvector (F,,,). For 
the three-component example under discussion here, the 
pseudobinary defined by ‘ifmin is given by the dashed line in 
Fig. 3. We now initiate a one-dimensional search along this 
dashed line in order to minimize the projected Gibbs energy 
of mixing function: 

G mix.prG( 7$,-i + X?,i”)) (14) 

with respect to the free parameter. X. Along this p~udobina~ 
there are two minima in ~min~proJ. These are indicated by the 
unfilled dots in Fig. 3. As in the two-component case, the 
one dimensional minimization algorithm proceeds downhill 
from (X1, X2)ld along this pseudobinary section and stops at 
the minimum closest to the l-3 join. This then becomes the 
new initial guess and the global minimum in 4cI is found di- 
rectly. If the “downhill” search direction along the pseudo- 
binary section had resulted in finding the other minimum of 
G’mtx.pmj, the false minimum in 9 would have been attained, 
and the procedure would be to “look” uphill along the pseu- 
dobinary section until the maximum in (?m’r.proJ is crossed 
and the other minimum is achieved. 

Based upon our analysis and the success of the previous 
examples, a general algorithmic scheme may be proposed. 

(step Oa) Specify a model for the molar Gibbs free energy of 
mixing of an n + I component solid solution in terms of 
n independent compositional variables r,, r2, . . , r, (ar- 
ranged as the elements of a vector, 7) T and P. Note that 
analytical expressions for the first and second composi- 
tional derivatives of this function (see appendix for general 
methods of obtaining these) are utilized here and are nec- 
essary for the specification of the chemical potentials of 
endmember components. 

(step Ob) For each endmember of the solid solution, compute 
the quantity Ap as defined above. This will require spec- 
ifying a reference bulk composition for the liquid phase, 
the availability of a model for compu~tion of chemical 
potentials of components in the liquid, and the availability 
of thermodynamic data for the standard state properties 
of endmember soIid components. 

(step 1 ) Solve Eqns. 8, 9, and 7 for (Xi, X,, . . . , X,,),, and 
transform the result (if a component transformation is 
necessary) into the reference point ?id. This is the solution 
to the problem assuming ideal mixing in the solid. Using 
the derived values of (X, , X2, . . . , X,),, and Eqn. 6 obtain 

Aid. If the “solid solution” has only one component (i.e., 
the saturation state for a pure endmember solid is in ques- 
tion), then exit the algorithm: Aid gives the saturation con- 
dition. For the trivial case of an ideal solution model, the 
correct answer is also obtained at this step, and the algo- 
rithm should be exited. 

(step 2) Use 3,d and Aid as an initial guess to minimize the 
function @ defined by Eqn. 10. Note that the solid activity 
terms in Eqn. 10 are entirely determined by specifying ? 
and the stipulated Tand P. Minimize Q, using an algorithm 
based upon Marquardt’s method, which incorporates a 
mechanism for keeping the solution vector within feasible 
bounds (see Appendix and algorithm 23, ~~od~~ed Mar- 
quardt method.for minimising a nonlinear sum-&squares 
,fiwzcGon, of NASH, 1990). 

(step 3) Evaluate the function value of @ at the minimum 
obtained in step 2. If Q, is zero, exit the algorithm. 

(step 4) Compute the direction of minimal curvature of Grnix 
at i&by minimizing the Rayleigh quotient given by Eqn. 12 
using Algorithm No. 25 (Ra})le~gh ql~ot~ent minimization 
by conjugate grad~e~~~) of NASH ( 1990). This yields a uni- 
directional search vector (F,,,i”) which defines a pseudo- 
binary section through emin1 

(step 5 ) Minimize Gmix.proj (Eqn. 14) with respect to X using 
Algorithm No. 17 (Minimisation ofafunction of one vari- 
abie) of NASH ( 1990). Use ‘jtid as an initial guess to the 
minimum of c m’x43roJ _ Construct a new initial guess (& 
+ X T ) to the minimum of Cp from the result. min mtn 

(step 6) Utilizing the new initial guess computed in step 5, 
minimize @ according to the method discussed in step 2. 

(step 7) Evaluate the function value of + at the minimum 
obtained in step 6. If Q is zero, exit the algorithm. 

(step 8) Maximize @“x.proJ (Eqn. 14) with respect to X by 
minimizing _~miwroj using the algorithm mentioned in 
step 5. Use ?id as an initial guess to the maximum of 
Cmi’.proJ. This procedure results in X,,,. 

(step 9) Compute a new initial guess to the minimum of 
pIX.pKlJ as ?id + (X,,, + AA)7,,,, where Ai is a small 
number with the same sign as A,,,,,. Minimize @“x*proj 
with respect to X as in step 5. This results in a X,i” different 
than that obtained previously. 

(step 10) Use the value Of X,i” obtained in step 9 to construct 
a new initial guess ( rid + x mlnTmin)to the minimum of +. 

(step 11 ) Utihzing the new initial guess computed in step 10, 
minimize @ according to the method discussed in step 2. 

(step 12) EvaIuate the function value of Q1 at the minimum 
obtained in step 1 I. If Q, is nonzero, report a failure of the 
algorithm. 

In the software package MELTS (GHIORSO and SACK, 
1994), the above algorithm is implemented in the C pro- 
gramming language and is used to solve problems involving 
solid phases with up to seven components coexisting with a 
twelve-component silicate liquid. As an additional compli- 
cation, the solid solution models employed in MELTS gen- 
erally involve internal “ordering” parameters which account 
for the energetic effects of composition, temperature, and 
Pressure-dependent cation ordering. The procedure imple- 
mented in MELTS is highly successful in finding the global 
minimum in 9 and is used to calculate the onset of saturation 



of a particular solid phase. This is effected hy examining the 
sign of the chemical affinity which results from solution of 
the above algorithm. Positive affinities indicate undcrsatu- 
ration and negative affinities indicate supersaturation, When 
supersaturation is detected for a particular solid. that solid is 
added to the list of stable phases in the system with the com- 
position indicated by the above algorithm. This composition 
is then refined and the mass ofthe precipitated solid calculated 
by direct minimization of the potential function which char- 
acteriLes thermodynamic equilibrium in the system (e.g.. 
GtrrctKSo. 1985: GHIORSO and Krr FIMF:N. 1987: GttroRso 
and SMX. 1994). The algorithm described here could be 
used to calculate the energetic drive for crystal growth in 
magmatic systems (Gtiio~~o. 1987) or be utilized to estimate 
the driving force for crystal dissolution reactions. Compared 
to previous algorithms proposed for computing the saturation 
condition of multicomponent solids precipitating from 
aqueous solutions (REEr), 1982: H.AK~II: et al., 1987) or sil- 
icatc liquids ( GHIORSO, 1085 ). the proposed algorithm is the 
only one that returns directly the chemical athnity of the 
disequilibrium process. When timed against the algorithm of 
fiHlORW ( 1985) on identical problems. the algorithm pro- 
posed here is about an order of magnitude more ethcient. 

Detection of Instability Within a homogeneous Phase 

In this section, an algorithm is developed to address the 
question of the thermodynamic stability of a homogeneous 
phase with respect to unmixing. In the normal practice of 
computing equilibrium phase proportions by potential min- 
imization techniques, this question arises at the close of every 
minimization attempt. Some check must he made as to 
whether, in the course of minimizing the energy of the system 

and consequently computing the compositions and propor- 

tions of the specified phases in the assemblage. the compo- 
sition of some phase has not inadvertently become mctastable. 

For example. in computing phase equilibria tn magmatic 

systems. as crystallization proceeds, the liquid compositit,n 
may evolve so as to hccomc mctastable with rcspcct to two 
coexisting immiscible liquids. Once this mctastahilit! is de- 
tected. two liquids are spccilied to the potential minimization 
procedure. and the process of computing the ~quilibriurn 
compositions and proportions i< repeated. A cheek for the 
intrinsic stability ofeach phase in a computed “equilibrium” 

assemblage is demanded because algorithms which determine 

phase proportions and phase compositions by potential min- 

imization techniques. assume that the phase assemblage 

specified at the onset is thr tinal phase asscmblagc. These 

algo~thnls vary only the prt~p(~~i(~n and ~orn~~~sition of each 
phase in order to minimize the energy of the system. Because 

a check for instability must IX_% made for every phase in an 
assemblage, we reyuirc :I rapid algorithm that is applicable 
to phases with highl! nomdcal Gibbs energy wrfaccs. ‘Ihe 

algorithm presented here meets this challenge. 
The procedure is developed by describing tirst :I two-com- 

ponent example. then a three-component example, and h- 

nally by stating the general algorithm. tonsidcr a two-com- 

ponent regular solution with an interaction parameter of 20 

kJ at a temperature of I Ott0 K. Recall that this model was 
utilized as an example for the previous algorithm and that 

the molar Gibbs free energy of mixing of this solution is 
plotted in Fig. 2. The minima in C?“” are located at .I’-values 
of 0.1697 and 0.830X. Any composition interior to this in- 
terval is metastable with respect to unmixing. Suppose a tan- 
gent line is drawn to the t;“” curcc at the point 0. Ih92. ‘This 

line is obviously horizontal and intersects the CT”“’ curve at 

the other minimum. Now, WC subtract the Gibbs energy given 

by this tangent line from (7”“‘. The result. A(;, is plotted as 
the heavy curve in Fig. 4. Note that this neu curve simply 

represents the original tTn”’ function translated so that the 

minima nom occur at a .I<> value of zero. Next. consider 

constructing a tangent line to the t;“‘i’ curve at sonic smaller 

0.4 

0.3 

0.2 

AT; 
0.1 
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- 0.1 

0.2 0.4 
X 

0.6 0.8 

FE. 4. Plot of the function defined by Eqn. I5 for a binary regular solution (I* equal 20 kJ. 7’cqual 1000 K) with 
a reference composition (7,) chosen at three points of tangency: X equal to 0.15 (outside the solvus). X equal to 
0.1692 (along one limb of the solvus), and X equal to 0.18 (within the solvus). The dashed lines correspond to the 
orientation ofthe tangent line with respect to the molar Gibbs free energy of mixing curve at the indicated composition. 
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(b) 

FIG. 5. Contour diagrams of the function AC (Eqn. 15) for a 
three-component regular solution with W,,, IV,,, and W,, chosen 
to he. 50, 0, and 20 W, respectively. Contours are in kJ. The tem- 
perature is assumed to he 1000 K. Reference compositions are denoted 
by the horizontally ruled dot along the l-3 join and are given by 

X-value, say 0.15. If the Gibbs energy values given by this 
tangent line are subtracted from @‘ix, the result is the AC? 
VS. x curve labeled 0.15 in Fig. 4. The equivalently labeled 
dashed line in Fig. 4 indicates the orientation of the tangent 
line with respect to @““. The same procedure may be applied 
to a tangent line of the cm’” curve at some X value inside 
the metastable region, say 0.18. The resulting AC function 
is also plotted in Fig. 4. Notice that the function Ac(O.15) 
is greater than or equal to zero for all X, whereas the function 
Ac( 0.18) is negative at large X. This result can be generalized 
to the rule that AG will always be greater than or equal to 
zero if the tangent line is evaluated outside the metastable 
region, and it will be somewhere less than zero if the tangent 
line is evaluated inside the metastable region. This rule sug- 
gests an algorithm for detecting instability. 

Consider the result of minimizing a particular function 
AC, which has been constructed at a point of tangency cor- 
responding to some composition of unknown stability. If we 
choose as an initial guess for the minimization algorithm 
some composition very close to X equal to zero or one, the 
procedure will locate either the left or right minimum of Ac. 
If the minimization is performed twice, once with each of 
these initial guesses, both minima will be found. One of the 
two minima identified by the procedure must be located at 
the point of tangency, i.e., the initial composition being in- 
vestigated for stability (see Fig. 4). That minimum may be 
discarded from consideration. If the function value of Ae at 
the other minimum is positive, the composition under in- 
vestigation is stable. If it is negative, the composition speci- 
fying the point of tangency is metastable, and will most likely 
unmix to a second phase with a composition given approx- 
imately by the location of this second minimum. Let us see 
how this approach works in a three-component system. 

Assuming the composition (X, , X2) equal to (0.30, 0.01) 
and the Gibbs free energy of mixing surface plotted in Fig. 
3a, a tangent plane may be constructed to the Gibbs surface 
at this composition, and a function AC evaluated in a manner 
analogous to the binary. A contoured surface of this function 
is plotted in Fig. 5a. Utilizing this diagram, the question may 
be asked: is the composition (0.30, 0.01) metastable? The 
method to answer this question, as deduced from the previous 
example, is to locate the minima of AC, discard the minimum 
corresponding to the original composition, and evaluate the 
sign of the function for the remainder. A glance at Fig. 5a 
reveals that the only minimum in AG is at the composition 
of tangency; hence, this composition is stable. Formally, this 
fact could be deduced by performing three separate mini- 
mizations of the function AC, starting each time with a dif- 
ferent initial guess. Suitable choices are indicated by the open 
dots in Fig. 5a, and correspond to compositions very close 
to each of the three endmember components in the system. 
The computed descent paths to the minimum are indicated 
on Fig. 5. These were obtained using Algorithm No. 21 

(XI, xz) equal to (0.30, 0.01) in (a), (0.300, 0.0522) in (b), and 
(0.3. 0.1) in (~1, corresponding to outside, on, and interior to the 
SOlvUS limb. The open dots denote initial guesses for an algorithm 
who% objective is to find the minima in AC. Dashed lines and amows 
describe the path to the descent to the minimum. The horizontally 

ruled dot near the Z-apex in (c) denotes the global minimum in AC. 



( I irk/&~ incV7-ic’ ~~777t~~?7i.~~~~) ctf Nhst t i IWO), In all three 

cases. the single minimum is located numerically and MC 

deduce that the original composition is stahlc. 

Nou consider the reference composition (0.300. 0.0522 ) 
which happens to correspond to a point on the limb of the 

solvus in this system. The _MS function fi)r this cast is con- 

toured in Fig. 5b. Note that thcrc arc no\4 two minima in 

Ast: and that both minima occur at exact /crocs ofthe lilnc- 

tion. These two minima define the orientation of a tic lint 

across the solvus. These minima may be located by starting 

from the same three initial guesses as hcforc. The starting 

points near 1 and 3 result in finding the initial point oftan- 

gcncy. From the point near 2, the miliimi~c7-dcscc7~ds directly 

to the other minimum and we conclude that the initial com- 

position is incipiently unstable. Finail!, consider the rcfercnce 

composition given by (0.3. 0. I ) and the cc)rrcsponding .!& 

function contoured in Fig. SC. Once again. there arc two 

minima in UT. but the one closest to pure 2 is in this case 

located at strongly negative catucs ofthc function: the initial 

composition is well within the solvus and is mctastablc. Two 

ofthc three initial guesses result in locating the deep minimum 

near 3 and one permits descent to the initial composition at 

the point of tangency. WC conclude that the original com- 

position is metastablr and deduct ft-om Fig, 5c the apprtts- 

imatc solvus extent and tic lint ~~rici~tati(~~l li)r the cyuilibriunl 

two-phase asscmhlagc. 

Based upon our analysis of the two and three-component 

casts. the fdlowi~~g generai algorithm may he stated. 

(step Oa ) Specify a model for the molar Gibbs fiec energy of 

mixing of an ~7 t 1 component solution in terms of 17 

illdependent compositional variables r, , ,‘I. . . t;, (ar- 

ranged as the elements ofa vector. 7). Tand I’. Note that 
analytical expressions for the tirst compositi~~nai derivative 

of this function are utilized in this algorithm. See the ap- 

pcndix for general methods of obtaining these derivatives. 

(step Oh) Specify the reference composition. f,,. of the 

phase. 

(step I ) Compute the function 

which represents the difference between the molar Gibbs 

Free energy of mixing and a tangent hypersurface to CTm” 

at fg. 

(step 2 ) Let the n + I endmember components in the solid 
solution be indexed on i. and let .I’, . . A’,,, I denote the 
mole fractions of these endmemhers. Let i equal I: 

(step 2. I ) Compute a composition .?;,, (i.e. [ Xl1 .Y:!. . 
.Y,, ( A’,,, , I,,, ) such that 

loft? + 1) I 
.Y, = 

IOf?? + I) + n 
and X,+, = 

lO(n + 1) + PI . 

Transform the result f it’a component transl~~r7llatlo~l 

is necessary ) into the imtial guess P,, 

(step 2.2) Minim+ the function &I giycn I,! I:qn. ( 15 i 
with t’cspcct to T. I Jsc i’,,, as an initial guess for the 

minimum. 4lgorithm No. 2 I of NASII I IWO. I tr/,- 
trh/c mc/ric, /~r//ti/i~/.zc~) is ideal11 suited 10 this lash. 

It requires only tirst dcrivativcs of the i’unction and 

incorporates a provision to keep the soluliorr vccto7 

within bounds during the course ofminimizltion. Call 

the location ofthc minimum T,,,,,. 

(step 2.1) ICF,,,,, is “sufficicntl!” close to i,,, that is ii’ the 
dot product 7 A,,,,” rl, is icss than some acceptable tol- 

erance. then the minimi~ati(~n routine has found the 

original point of tangency. Proceed to step 2.6. 

(step 2.4) If G( f,,,,, ) is grcatcr than zero, then the min- 

imization routine has determined that ;I miscibility 

gap cxis~s. but the rrfercnce point it,, is outside this 

gap. Proceed to step 2.0. 

(step 2.5 ) If .A(;( 7 ,,,,,, ) i\; less than or equal to Lcro, then 

lhc rcfcrcnce composition PC,, is unstable with respect 

to unmixing. fhc approximate tic-lint is given by the 

vector i’,, T lillii The accuracy ofthis approximation 

worsens as X;t -7,,,,,,) becomes more negative: it is 

exact if 2471 i,,,,,, I is Lcro. In any event, i: ,,,,,, provicfcs 

an cxccknt initiat guess for the ~(~illp(~slti(~il of the 

second phase. if one is required for come potential 

minimization proccdurc. 

(step 7.6) Increment I. ii i > ii i I. then exit the algorithm. 

Otherwise. go to step 2. I. 

The above algorithm has been implemented in the C pro- 

gramming language and has proved successful in detecting 

instability in phases with up to twelve components. In prac- 

tice. the procedure will occasionally tind the location ofmore 

than one minimum with ncgativc function values. indicating 

that the initial c(~Inpositi~~n is unstable with respect to un- 

mixing into more than two phases. It is found that the best 

way to proceed in this eventuality is to add one phase at a 

time to the specilied list of stable phases in the asscmblagc. 

choosing the ?,,,,, which gi\cs the most negative value o1.X~ 

from the list of likely compositions. At this point, potential 

function minimization tcchniyues are used to determine the 

actual compositions and proportions of the coexisting phases, 

and the instability algorithm is invoked again. Further insta- 

bility, if detected. is similarI\ dealt with by adding one new 

phase at a time. This procedure is numerically stable and 

aKords the possihilit> of detecting up to 17 t 1 coexisting 

immi~ibie phases from an t7 f i c(~rnpoiient model function. 

Two algorithms are developed which address critical as- 

pects of the calculation of equilibrium phase relations in 

highly nonideal thermodynamic systems. The first deals with 
detection of the saturation state of a phase and second 
addresses issue of the intrinsic stability of a phase with 
respect to unmixing. Both algorithms have been implemented 
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in C and tested with complex solution models describing 
solid and liquid phases in magmatic systems ( GHIORSO and 
SACK, 1994). The algorithms are intended to support poten- 
tial function minimization techniques and are designed for 
rapid and repeated execution within a generalized modeling 
code. 
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APPENDIX 

Summary of the Numerical Method for Solving the System of 
Simultaneous Nonlinear Equations 

The nonlinear system embodied in Eqn. 5 may be efficiently solved 
using Marquardt’s method as modified by NASH ( 1990) for bounded 
feasible solution domains. We define functions p,( r,, r2, . . , r,, A, 
T, P) in terms of the right-hand sides of each of the n t I equations 
in(5) 

(Al-l) 

and form the sum of squares of these quantities: 
n+, 

3= c cp:. (Al-2) 
,=1 

The minimum of @ with respect to the n-elements off and the scalar 
A is determined at constant temperature and pressure by choosing 
an appropriate initial guess (To and Ao) to the solution and expanding 
@ in a Taylor series in the vector ?j, defined by: 

(Al-3) 

Certain simplifying assumptions are employed in constructing the 
Taylor series. The series is truncated to second order in q, i.e., 

and the quadratic term is approximated from the Jacobian of the 
nonlinear system: 

where the Jacobian is given by 

1 a9,+, a9,+, a9"+, - . - _ 
ah ar, a.4 J 

Equations Al-4 and A 1-5 are valid if the initial guess is a good ap- 
proximation to the actual solution. The partial derivatives in the 
Jacobian matrix may be readily evaluated from Eqn. A I- 1: 

acp,(r,, , r., A) 
ark 

= (#‘I - A - 5 t,,pI’” ) !?$ 
,=I k 

an(r,, . . , r,, A) 
aA = -($” -A - 5 v,,,&‘). (Al-7) 

i=l 
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A method for obtaining the compositional derivatives of the solid 
chemical potentials is discussed in the next section. The process is 
not straightforward if the solid demonstrates compositionally depen- 
dent atomic ordering. 

A minimum of Eqn. A l-4 is obtained by setting the derivative to 
zero and solving for the “correction”-term. 7f: 

d+($) -= 
4 

0 =a J;J$j = ---J;tp,,. (AI-8) 

In practice, if the matrix product JiJ, is not positive definite or if 

the derived vector Zj renders the solution vector 1 [I unfeasible, then 

Eqn. A l-8 is modified by introducing an arbitrary positive constant 
X according to: 

(J;J,, + Xl)4 = -J;p,,. (Al-9) 

where I is the identity matrix. This constant is referred to as the 
Marquardt parameter. The correction vector resulting from solution 
of Eqn. A l-9 is used to construct an estimate of the solution of the 
nonlinear system by application of Eqn. A l-3. This estimate becomes 
the new initial guess of a subsequent iteration. The process is repeated 
until the norm of the correction vector is “zero.” At the global min- 
imum of Eqn. Al-2, both Ip and the Marquardt parameter should 
have a value of zero. 

Evaluation of the Equilibrium Thermodynamic Properties of 
Phases with Variable Degrees of Microscopic Order 

The algorithms discussed in this paper require the evaluation of 
compositional derivatives of the Gibbs free energy and of the chemical 
potentials of endmember components of the solid phases. Obtaining 
analytical expressions for these derivatives is complicated by the fact 
that the energetic description of the solid is often written in terms of 
one or more ordering parameters which describe the state of atomic 
order/disorder in the crystal (THOMPSON, 1969. 1970). If the solid 
is in a state of internal or homogeneous equilibrium, these ordering 
parameters are a unique function of composition, T and P, and the 
derivatives of interest may be completely determined. In this appen- 
dix, we summarize a method for obtaining these derivatives. 

In general, the molar Gibbs free energy of a solid solution, G, may 
be expressed in terms of a vector of independent compositional vari- 
ables, 7, a vector of ordering parameters, S, the temperature, T, and 
the pressure, P, i.e., C?( f, S, T, P). cis an intensive thermodynamic 
quantity and may always be related to the extensive Gibbs free energy 
of solution by multiplication of the total number of moles of the 
phase in the system. 7: 

G(n, f, S, T, P) = &(F, S, T, P). (A2-I) 

It should be noted that the relation embodied in Eqn. A2-I affords 
the basis of transforming any derivative of c into a corresponding 
derivative of G. We simply write down expressions for the total de- 
rivatives of G: 

dti = ?dG? + G;dq, (A2-2 ) 

d=G = ?d% + 2dqdG + G’d2q, (AZ-3) 

and specify them for the parameter of interest, i.e.. Eqn. A2-2 may 
be used to ‘*derive” 

ac aG _ an aG 
-=nYT+GaT=n-, 
aT aT 

since the total number of moles of the phase is independent of tem- 
perature. It follows from Eqns. A2-I through A2-3 that we need only 
focus our attention on derivatives of G. 

In practice, 6 is often modeled as the sum of a configurational 
entropy contribution and a truncated second-order Taylor expansion 
in the composition and ordering variables: 

+ C C G, ,,,, r,r, t ,‘ s (2 ,,,,, r,.s, + c 1 (;‘,,,c,t,.s,, (A2-4) 
,=I ,=I ,= i ,=, ,=I ,=I 

where r, denotes one of the n-elements off and S, refers to one of 
the m-elements of 3. This formulation is highly successful in de- 
scribing extremely nonideal solid solutions (GHIORSO, 1990a; 
HIRSCHMANN, 1991; SACK and GHIORSO, 1989, 1991a,b, 1994a,b,c). 
It should be remarked that Eqn. A2-4 is a formulation of the molar 
Gibbs free energy which is applicable to an arbitrary (in general a 
disequilibrium) state of order. As the higher order Taylor expansion 
coefficients are usually taken to be constants, it is a straightforward 
matter to evaluate analytically partial derivatives of Eqn. A2-4. with 
respect T, S, Tor P. Thus, expressions like Eqn. A2-4 may be ma- 
nipulated in conjunction with the generalized form of Darken’s re- 
lation ( GHIORSO, 1990b) 

p, = G+ :/,(i-,)g+ zg,(s,)g. (A2-5 ) 
,= 1 I ,=I , 

to provide algebraic expressions for the chemical potentials of end- 
member solid components. The functions/; and g, in Eqn. A2-5 are 
determined by the stoichiometry of the endmember component 
( GHIORSO, 1990b). 

Let us focus on deriving expressions for the compositional deriv- 
atives ofthese endmember chemical potentials, specifically, derivatives 
which are appropriate for the algorithms presented in this paper and 
represent variation of the chemical potential in an equilibrium state 
of internal order. The methods employed will be generally applicable 
to any f, T, or P derivative of p, or c that may be required. 

From Eqn. A2-5. the total derivative ofFl may be written (assuming 
constant Tand P): 

We specify Eqn. A2-6 to reflect the total derivative ofn,, with respect 
to an infinitesimal variation of the k”’ element off: 

&, dG d/;(rk) ac 

dr,=x 
+i---.-- 

drk ar, 

(A2-7) 

Note that Eqn. A2-7 has been simplified by recognizing that the 

elements off are independent, i.e., df;(r,) _ - - 0 for i $1 k, and that 
& 

the ordering state in the general (disequilibrium) case is not a function 
&,(s,) _ of composition, i.e., - - 

drk 
0. This is an extremely convenient 

result, but implies that the derivative defined by Eqn. A2-7 needs yet 
to be projected to, or evaluated for, the equilibrium ordering state. 
Given that the total derivative of c may be expressed as 

dG’ = i E dr, + : g ds, - SdT + r’dv. 
,=, ar, ,=, 84 

(A2-8) 

we obtain the first term on the right-hand side (rhs) of Eqn. A2-7: 

(AZ-9) 
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Writing d 

proceeding to specify this quantity for drk, yields 

(A2-IO) 

and 

\ “S, I a 2G m a% ds 
drk = -  a ha s ,  

+C--‘. ,= , as,& drk 
(A2-I I) 

Thus, all the total derivatives on the rhs of Eqn. A2-7 may be ex- 
pressed, using Eqns. A2-9, A2-10, and A2-I I. in terms of simple 

partial derivatives and the total derivative matrix, $ The requisite 

partial derivatives may be computed directly from the definition of 

G. The total derivative matrix, 2 , is undefined unless a relationship 

is specified between ordering state and composition. The natural re- 
lation is the requirement of internal or homogeneous equilibrium. 

The condition of homogeneous equilibrium is specified by setting 
a G 

the vector z equal to zero. This is the mathematical consequence 

of the stipulation that the Gibbs free energy must be= minimal, with 
respect to variation of the ordering parameter(s), if the phase is in 
a state of homogeneous equilibrium. Writing this condition out ex- 
plicitly, 

rq 
cp,(f,S,, T,P) I Pnl V, S; 4 , ~, ~)  ’ 

(A2-12) 

demonstrates that the problem involved in computing equilibrium 
values off is really one of solving m nonlinear equations in m un- 
knowns The unknowns are the m-elements of I,( f, T, P). Equation 
A2- I2 is usually solved using Newton’s method (NASH, 1990). Now, 

let us consider thejlh element of the vectors , where the vertical 
7, 

line implies evaluation of the quantity to the left of the line at the 
“point” specified on the right. We can write the total derivative in 
the usual manner: 

The left-hand side of Eqn. A2- I3 is zero. This is because any variation 
a G 

Ofas 
a G 

is zero since - IS constant (and also happens to be equal 
J 3, as, z 

to zero) in the equilibriu;ordering state. Evaluating the Ihs of Eqn. 
A2-I 3 at constant T and P for an infinitesimal change in rk yields: 

bine statements of Eqn. A2-I4 for all 4 elements’of f and all m 
elements of S into a matrix equation: 

a 2G 1: .’ 
a 2G -  -  

ar, as ,  a r , a s ,  
_  

a % 
ar, as, 4 a % -  .  .  .  -  

a r , a s ,  

a 2G -  
a s ,  a s ,  

= 1: “’ a 2G -  
a s ,  a s ,  

a2G 
a s , a s ,  

1 

a 2G 
a.hds, SC4 

(A2-15) 

Equation A2- I5 may be used to solve for the elements of the matrix 
df 
E, 

m the particular case of homogeneous equilibrium. Note that 

a solution for ds 
dfq 

IS always possible, since the matrix of second- 

a % 
partial derivatives, alar , isguaranteed to have an inverse: it must 

3, 
be positive definite since the Gibbs energy is minimal in the equilib- 
rium ordering state. 

All of these results may be assembled to rewrite Eqns. A2-5, A2- 
7, A2-9. A2-IO, and A2-I I in the equilibrium ordering state. Equation 
A2-5 becomes: 

(A2-5 eq) 

aG 
since all the elements of z are zero. Numerical values of 1, are 

f, 
computed by solution of Eqn. A2-12. Similarly, Eqn. A2-7 becomes: 

dp, dc 
I I 

dfi(r,) at? - =- 
6 4 & 4 

+-- 
drk ark 3q 314 

I 
and Eqns. A2-9 through A2-I I simplify to: 

(A2-7 eq) 

(A2-9 eq) 

““1 =EI +~$l,~l, , (A2-IOeq) 
drk “I dr@k 3 

9 

and 

(A2-I I eq) 

dS respectively. The matrix - 
dFRl 

IS obtained by solution of Eqn. 

A2-15. 


